ZFS pool on-disk format versions are specified via "features" which replace the old on-disk format numbers (the last supported on-disk format number is 28). To enable a feature on a pool use the upgrade subcommand of the zpool(8) command, or set the feature@feature_name property to enabled.
The pool format does not affect file system version compatibility or the ability to send file systems between pools.
Since most features can be enabled independently of each other the on-disk format of the pool is specified by the set of all features marked as active on the pool. If the pool was created by another software version this set may include unsupported features.
Every feature has a guid of the form com.example:feature_name. The reverse DNS name ensures that the feature's guid is unique across all ZFS implementations. When unsupported features are encountered on a pool they will be identified by their guids. Refer to the documentation for the ZFS implementation that created the pool for information about those features.
Each supported feature also has a short name. By convention a feature's short name is the portion of its guid which follows the ':' (e.g. com.example:feature_name would have the short name feature_name), however a feature's short name may differ across ZFS implementations if following the convention would result in name conflicts.
Features can be in one of three states:
active
enabled
disabled
The state of supported features is exposed through pool properties of the form feature@short_name.
Some features may make on-disk format changes that do not interfere with other software's ability to read from the pool. These features are referred to as "read-only compatible". If all unsupported features on a pool are read-only compatible, the pool can be imported in read-only mode by setting the readonly property during import (see zpool(8) for details on importing pools).
For each unsupported feature enabled on an imported pool a pool property named unsupported@feature_guid will indicate why the import was allowed despite the unsupported feature. Possible values for this property are:
inactive
readonly
Some features depend on other features being enabled in order to function properly. Enabling a feature will automatically enable any features it depends on.
The following features are supported on this system:
async_destroy
GUID | com.delphix:async_destroy |
READ-ONLY COMPATIBLE | yes |
DEPENDENCIES | none |
Destroying a file system requires traversing all of its data in order to return its used space to the pool. Without async_destroy the file system is not fully removed until all space has been reclaimed. If the destroy operation is interrupted by a reboot or power outage the next attempt to open the pool will need to complete the destroy operation synchronously.
When async_destroy is enabled the file system's data will be reclaimed by a background process, allowing the destroy operation to complete without traversing the entire file system. The background process is able to resume interrupted destroys after the pool has been opened, eliminating the need to finish interrupted destroys as part of the open operation. The amount of space remaining to be reclaimed by the background process is available through the freeing property.
This feature is only active while freeing is non-zero.
empty_bpobj
GUID | com.delphix:empty_bpobj |
READ-ONLY COMPATIBLE | yes |
DEPENDENCIES | none |
This feature increases the performance of creating and using a large number of snapshots of a single filesystem or volume, and also reduces the disk space required.
When there are many snapshots, each snapshot uses many Block Pointer Objects (bpobj's) to track blocks associated with that snapshot. However, in common use cases, most of these bpobj's are empty. This feature allows us to create each bpobj on-demand, thus eliminating the empty bpobjs.
This feature is active while there are any filesystems, volumes, or snapshots which were created after enabling this feature.
filesystem_limits
GUID | com.joyent:filesystem_limits |
READ-ONLY COMPATIBLE | yes |
DEPENDENCIES | extensible_dataset |
This feature enables filesystem and snapshot limits. These limits can be used to control how many filesystems and/or snapshots can be created at the point in the tree on which the limits are set.
This feature is active once either of the limit properties has been set on a dataset. Once activated the feature is never deactivated.
lz4_compress
GUID | org.illumos:lz4_compress |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | none |
lz4 is a high-performance real-time compression algorithm that features significantly faster compression and decompression as well as a higher compression ratio than the older lzjb compression. Typically, lz4 compression is approximately 50% faster on compressible data and 200% faster on incompressible data than lzjb. It is also approximately 80% faster on decompression, while giving approximately 10% better compression ratio.
When the lz4_compress feature is set to enabled, the administrator can turn on lz4 compression on any dataset on the pool using the zfs(8) command. Please note that doing so will immediately activate the lz4_compress feature on the underlying pool using the zfs(1M) command. Also, all newly written metadata will be compressed with lz4 algorithm. Since this feature is not read-only compatible, this operation will render the pool unimportable on systems without support for the lz4_compress feature.
Booting off of lz4-compressed root pools is supported.
This feature becomes active as soon as it is enabled and will never return to being enabled.
spacemap_histogram
GUID | com.delphix:spacemap_histogram |
READ-ONLY COMPATIBLE | yes |
DEPENDENCIES | none |
This features allows ZFS to maintain more information about how free space is organized within the pool. If this feature is enabled, ZFS will set this feature to active when a new space map object is created or an existing space map is upgraded to the new format. Once the feature is active, it will remain in that state until the pool is destroyed.
multi_vdev_crash_dump
GUID com.joyent:multi_vdev_crash_dump | |
READ-ONLY COMPATIBLE no | |
DEPENDENCIES none |
This feature allows a dump device to be configured with a pool comprised of multiple vdevs. Those vdevs may be arranged in any mirrored or raidz configuration.
When the multi_vdev_crash_dump feature is set to enabled, the administrator can use the dumpadm(1M) command to configure a dump device on a pool comprised of multiple vdevs.
Under Linux this feature is registered for compatibility but not used. New pools created under Linux will have the feature enabled but will never transition to active. This functionality is not required in order to support crash dumps under Linux. Existing pools where this feature is active can be imported.
extensible_dataset
GUID | com.delphix:extensible_dataset |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | none |
This feature allows more flexible use of internal ZFS data structures, and exists for other features to depend on.
This feature will be active when the first dependent feature uses it, and will be returned to the enabled state when all datasets that use this feature are destroyed.
bookmarks
GUID | com.delphix:bookmarks |
READ-ONLY COMPATIBLE | yes |
DEPENDENCIES | extensible_dataset |
This feature enables use of the zfs bookmark subcommand.
This feature is active while any bookmarks exist in the pool. All bookmarks in the pool can be listed by running zfs list -t bookmark -r poolname.
enabled_txg
GUID | com.delphix:enabled_txg |
READ-ONLY COMPATIBLE | yes |
DEPENDENCIES | none |
Once this feature is enabled ZFS records the transaction group number in which new features are enabled. This has no user-visible impact, but other features may depend on this feature.
This feature becomes active as soon as it is enabled and will never return to being enabled.
hole_birth
GUID | com.delphix:hole_birth |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | enabled_txg |
This feature improves performance of incremental sends ("zfs send -i") and receives for objects with many holes. The most common case of hole-filled objects is zvols.
An incremental send stream from snapshot A to snapshot B contains information about every block that changed between A and B. Blocks which did not change between those snapshots can be identified and omitted from the stream using a piece of metadata called the 'block birth time', but birth times are not recorded for holes (blocks filled only with zeroes). Since holes created after A cannot be distinguished from holes created before A, information about every hole in the entire filesystem or zvol is included in the send stream.
For workloads where holes are rare this is not a problem. However, when incrementally replicating filesystems or zvols with many holes (for example a zvol formatted with another filesystem) a lot of time will be spent sending and receiving unnecessary information about holes that already exist on the receiving side.
Once the hole_birth feature has been enabled the block birth times of all new holes will be recorded. Incremental sends between snapshots created after this feature is enabled will use this new metadata to avoid sending information about holes that already exist on the receiving side.
This feature becomes active as soon as it is enabled and will never return to being enabled.
embedded_data
GUID | com.delphix:embedded_data |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | none |
This feature improves the performance and compression ratio of highly-compressible blocks. Blocks whose contents can compress to 112 bytes or smaller can take advantage of this feature.
When this feature is enabled, the contents of highly-compressible blocks are stored in the block "pointer" itself (a misnomer in this case, as it contains the compressed data, rather than a pointer to its location on disk). Thus the space of the block (one sector, typically 512 bytes or 4KB) is saved, and no additional i/o is needed to read and write the data block.
This feature becomes active as soon as it is enabled and will never return to being enabled.
large_blocks
GUID | org.open-zfs:large_block |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | extensible_dataset |
The large_block feature allows the record size on a dataset to be set larger than 128KB.
This feature becomes active once a recordsize property has been set larger than 128KB, and will return to being enabled once all filesystems that have ever had their recordsize larger than 128KB are destroyed.
large_dnode
GUID | org.zfsonlinux:large_dnode |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | extensible_dataset |
The large_dnode feature allows the size of dnodes in a dataset to be set larger than 512B.
This feature becomes active once a dataset contains an object with a dnode larger than 512B, which occurs as a result of setting the dnodesize dataset property to a value other than legacy. The feature will return to being enabled once all filesystems that have ever contained a dnode larger than 512B are destroyed. Large dnodes allow more data to be stored in the bonus buffer, thus potentially improving performance by avoiding the use of spill blocks.
sha512
GUID | org.illumos:sha512 |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | extensible_dataset |
This feature enables the use of the SHA-512/256 truncated hash algorithm (FIPS 180-4) for checksum and dedup. The native 64-bit arithmetic of SHA-512 provides an approximate 50% performance boost over SHA-256 on 64-bit hardware and is thus a good minimum-change replacement candidate for systems where hash performance is important, but these systems cannot for whatever reason utilize the faster skein and edonr algorithms.
When the sha512 feature is set to enabled, the administrator can turn on the sha512 checksum on any dataset using the zfs set checksum=sha512(1M) command. This feature becomes active once a checksum property has been set to sha512, and will return to being enabled once all filesystems that have ever had their checksum set to sha512 are destroyed.
Booting off of pools utilizing SHA-512/256 is supported.
skein
GUID | org.illumos:skein |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | extensible_dataset |
This feature enables the use of the Skein hash algorithm for checksum and dedup. Skein is a high-performance secure hash algorithm that was a finalist in the NIST SHA-3 competition. It provides a very high security margin and high performance on 64-bit hardware (80% faster than SHA-256). This implementation also utilizes the new salted checksumming functionality in ZFS, which means that the checksum is pre-seeded with a secret 256-bit random key (stored on the pool) before being fed the data block to be checksummed. Thus the produced checksums are unique to a given pool, preventing hash collision attacks on systems with dedup.
When the skein feature is set to enabled, the administrator can turn on the skein checksum on any dataset using the zfs set checksum=skein(1M) command. This feature becomes active once a checksum property has been set to skein, and will return to being enabled once all filesystems that have ever had their checksum set to skein are destroyed.
Booting off of pools using skein is supported.
edonr
GUID | org.illumos:edonr |
READ-ONLY COMPATIBLE | no |
DEPENDENCIES | extensible_dataset |
This feature enables the use of the Edon-R hash algorithm for checksum, including for nopwrite (if compression is also enabled, an overwrite of a block whose checksum matches the data being written will be ignored). In an abundance of caution, Edon-R can not be used with dedup (without verification).
Edon-R is a very high-performance hash algorithm that was part of the NIST SHA-3 competition. It provides extremely high hash performance (over 350% faster than SHA-256), but was not selected because of its unsuitability as a general purpose secure hash algorithm. This implementation utilizes the new salted checksumming functionality in ZFS, which means that the checksum is pre-seeded with a secret 256-bit random key (stored on the pool) before being fed the data block to be checksummed. Thus the produced checksums are unique to a given pool.
When the edonr feature is set to enabled, the administrator can turn on the edonr checksum on any dataset using the zfs set checksum=edonr(1M) command. This feature becomes active once a checksum property has been set to edonr, and will return to being enabled once all filesystems that have ever had their checksum set to edonr are destroyed.
Booting off of pools using edonr is supported.
userobj_accounting
GUID | org.zfsonlinux:userobj_accounting |
READ-ONLY COMPATIBLE | yes |
DEPENDENCIES | extensible_dataset |
This feature allows administrators to account the object usage information by user and group.
This feature becomes active as soon as it is enabled and will never return to being enabled. Each filesystem will be upgraded automatically when remounted, or when new files are created under that filesystem. The upgrade can also be started manually on filesystems by running `zfs set version=current <pool/fs>`. The upgrade process runs in the background and may take a while to complete for filesystems containing a large number of files.